Elitism is a Threat to Science

Science is highly exclusive: the vast majority of people cannot participate in research, access research articles, influence what gets researched, or influence science-related policy-making. 

This exclusivity is worrisome, not only because it is unfair (and that unfairness is not evenly distributed across different groups of people), but also because it is a threat to science itself. 

To see why, we need to look at the tumultuous history of support for science.

***

I’ll start with the American case.

In the United States, scientists and intellectuals have historically been resented for their perceived elitism. And the consequence of that resentment, as Richard Hofstadter argues at length in his 1964 Pulitzer Prize-winning Anti-intellectualism in American Life, is that science has only ever been supported in times when the federal government has found scientists useful – a point I hope to convince you is key to understanding the precarious status of science today.

One of the earliest historical examples Hofstadter points to is the 1824 presidential race between Andrew Jackson and John Quincy Adams, which was pitched, at the time, as a choice between aristocracy and intellect on the one hand, and democracy and native wisdom on the other. And this dichotomy had real consequences for American science: Adams supported federal funding for science, Jackson did not. What’s more, Adams’ plea to fund academic science using federal money was mocked for its perceived elitism. And with Jackson’s landslide victory, America continued lagging behind European science for years. As science historian Roy Macleod writes,  Jacksonian democracy “had little use for elite science, and less interest in its financial support.”

But the pendulum swung in American scientists’ favor during the Progressive Era, during which the government (not people) came to see intellectuals as useful in guiding reforms. For example, it was during this time that the “Wisconsin Idea” was born, in which universities were tasked with conducting social science research in the service of the state, so as to help guide regulation of the new, complex, industrial world. As the writer Brander Matthews observed at the time (1909), “The prejudice against the College Professors, like that against the men of letters, is rapidly dying down … due to a growing understanding of the real value of the expert and the theorist.”

But the pendulum swung again after WWI, when Americans largely turned against scientists for their perceived ties to the war and government, and the government no longer had much need for researchers. The status of science worsened further during the Great Depression, which, as historian Jacob Darwin Hamblin writes in Science in the Early Twentieth Century, saw “growing concern about technocracy, or rule by a scientific and technological elite,” which led to “outright hostility to scientists.” The result was that “science for its own sake, an ideal of the 1920s, seemed to be an elitist dream.”

Yet, financial support for science improved again during the New Deal and WWII, when the U.S. government (again, not people) once more found use for intellectuals: brain trusts were established to help guide the policies of the New Deal, and the government relied heavily on the expertise of university scientists for the war effort. It’s during this time, at the close of WWII, when American science entered its current status quo, with more or less continued federal funding and scientific autonomy despite see-sawing and generally negative attitudes toward science. This transition was largely facilitated by a 1945 government report titled Science-The Endless Frontier, which extolled scientists’ perceived utility to the government during wartime in order to secure continued funding and autonomy during peacetime – so that scientists could be all the more useful to the government when called upon in future times of need. This turned American scientists into what sociologist Chandra Mukerji has called a “reserve labor force” for the government, “in the sense that they [scientists] are supported by governments and industries so their honed skills will be available when they are needed.”

science_frontier
This 1945 report, commissioned by President Franklin D. Roosevelt, set the stage for modern American science. The report extolled scientists’ usefulness to the government during wartime so as to secure funding for basic research during peacetime – only because that would make scientists all the more useful to the government the next time it needed their help. In other words, this report turned American scientists into a “reserve labor force” for the government – a position that is only as secure as the government’s recognition of scientists’ utility.

But American scientists’ status as a “reserve labor force” has, on-and-off since the close of WWII, been called into question. Arguably, that’s where we stand today, with federal research funding flattening for the first time since WWII. What’s more, there’s a downward turn in Americans’ view of science and scientists, with science coverage disappearing from major media, anti-science conspiracy theories on the rise, and Americans seeing scientists as cold and untrustworthy.

fiske_survey
Survey data from Fiske and Dupree (2014) showing that Americans perceive scientists as competent but cold. Because trust is built on perceptions of both competence and warmth, this result may partially explain why Americans have historically distrusted scientists.

But this see-sawing status of science – and its relationship to perceptions of scientific elitism – is not unique to the United States, or even to Western cultures. More drastic versions of this trend can be found in many countries and historical periods, and always with tangible consequences for the practice of science itself. The most notable recent examples are the Soviet Union (as brilliantly summarized in Ings’ Stalin and the Scientists) and Communist China (as described in Wei and Brock’s Mr. Science and Chairman Mao’s Cultural Revolution). I’ll describe the Chinese case here, only because of the current meteoric rise of Chinese science, which some speculate could soon surpass American science in research output.

***

Like scientists and intellectuals in the U.S., Chinese academics have also been periodically looked down on as elitist by people and Party alike, and then periodically called upon by the government to serve the useful role of an intelligentsia in a modernizing state. This led, as elsewhere, to wild fluctuations in scientists’ societal roles and fortunes. Chinese scientists enjoyed independence and prestige briefly, between 1962 and 1965, after the Great Leap Forward and before the Cultural Revolution. But the Cultural Revolution spelled disaster for Chinese scientists, who were punished for their supposed elitism: 106 members of the Chinese Academy of Sciences were persecuted to death based on their “reactionary” behavior before the Communist takeover, scientists and doctors were “cured” of their elitism by doing forced agricultural labor in the countryside, significant research was placed in the hands of farmers with no scientific training, scientific journals were closed, and basic (non-applied) disciplines were forcibly purged in favor of Party-approved applied research.

Clearly, the state of science and academic research was dire during the Cultural Revolution. But, as has happened elsewhere so many times, scientists’ and intellectuals’ fortunes in China again swung in a positive direction once the government remembered the utility of letting highly-trained researchers do broad, basic research.

In 1975, two years after returning to power, Deng Xiaoping sent three of his lieutenants to the Chinese Academy of Sciences to investigate the state of science in China. Their subsequent “Outline Report on the Work of the Chinese Academy of Sciences” served as the blueprint for the rehabilitation of Chinese science, and emphasized the importance of basic research and allowing scientists to run their own affairs – echoing the same arguments made in the American government report Science-The Endless Frontier, which informs how science is conducted in the U.S. today. And, in China, as in the United States, the point of letting scientists run their own affairs was that doing so was seen as useful to the government: the Party offered scientists money, prestige, government positions, and the ear of politicians only because they realized that they could benefit from scientists’ expertise, so long as scientists were left alone to develop those expertise. In other words, Chinese scientists, like American scientists, became a reserve labor force.

***

The cursory history I’ve outlined above, which made little to no mention of similarly oscillating tides of scientific fortune in France and Russia, nor of more historically remote but qualitatively similar oscillations in, for example, the Hellenic world or the Medieval Muslim world, makes it clear that the status of science has always varied. And that variance has usually been tied to scientific exclusivity – which leads, inevitably, to perceptions of science as elitist. American scientists have more or less prospered since WWII despite see-sawing/negative attitudes toward scientists, largely because of the government’s continued recognition of scientists’ usefulness as a “reserve labor force.” But in light of the broader historical backdrop I’ve described, as well as the changing relationship between scientists and the American government we’re seeing today, I think it’s clear that this status is precarious. For both reasons of fairness and to secure the continued progress of science, I think we need to fix scientific exclusivity, and allow everyone to exercise their right to science.

There are better and worse ways of doing this. It’s important to remember that this is precisely what the Chinese Communists were trying to accomplish before they effectively shut down science in China. As Ethan Signer and Arthur W. Galston wrote for a 1972 issue of Science magazine, the Chinese were attempting to “to do away with institutional and social customs that used to keep intellectuals and professionals as elite classes culturally distinct from ordinary people.” But their attempt was, as we know now, an unmitigated disaster.

Fortunately, there are better ways of letting people exercise their right to science, which don’t involve sending scientists to the countryside to do forced agricultural labor. Here are some possibilities:

  1. We need more open-access publishing, which allows anyone with an Internet connection to access scientific research. While many journals are going open-access, we need far more journals to make the switch. We also need more scientists to start submitting their work to open-access platforms. It’s unfair that people can’t access research that their own tax dollars paid for. This is why, though legally questionable, I support websites like Sci-Hub, which break past journals’ paywalls and make research available to everyone.
  2. We also need science education to cater to more than just future scientists. In his Science in a Democratic Society, philosopher Philip Kitcher imagines an education system that is “purposeful and rewarding for the many who come to believe that their lives should go in a different direction [other than science] … we might encourage them [instead] to become happy consumers of scientific information.”
  3. Moreover, we need formal mechanisms for including scientifically-informed tax-payers, with diverse perspectives, in science-related decision-making. Here, Philip Kitcher again makes a useful suggestion, by pointing to Stanford’s Center for Deliberative Democracy as a possible model for including more people in science-related policy-making. The model would involve gathering a diverse sample of Americans, having them meet and talk with (possibly competing) experts on a science-related topic, and then polling them. This would serve as a proxy for what non-scientists would think about the issue, if they were given the chance to meet and actually talk with the experts in an inclusive way. 
  4. Another way to include more people in the scientific process (again suggested by Kitcher) is to let public representatives “behind the scenes” of science. This is a role which, I think, could be fruitfully played by online influencers – and some of them are already doing exactly that. For example, in his Emmy-nominated show Mind Field (which I am grateful to have been able to consult for), YouTube celebrity Michael Stevens let viewers behind the scenes of every part of the scientific process, from ethical review board meetings to the recording and analysis of data, to successful experiments, to failed experiments. And tens of millions of people watched. We need more content like this, and scientists should do what they can to help in the creation of that content (for e.g. by letting or inviting influencers into their labs). 
  5. We also need increased two-way communication between scientists and non-scientists. Fortunately, this can also be done using social media. Platforms like Instagram, Facebook, and Twitter allow scientists to directly engage with diverse non-scientists – to not only directly share their research with non-scientists, but to also hear what non-scientists would like to see researched, what their ethical concerns are, and to what extent they feel that their preferences are taken into account in the scientific process. Social media can also help foster trust between scientists and non-scientists. As my colleagues and I showed in a recent study (published in an open-access, online journal), simply seeing photos of smiling scientists on social media can significantly boost people’s perceptions of scientists as warm and trustworthy. That’s why I find it so encouraging that many scientists have already taken to social media to post “selfies” from their labs, fields, and chalkboards as a way to humanize research, and that accounts like @thescicommunity, @scientistselfies, @women.doing.science, @500womensci, and @500queerscientists are making it easy to find those scientists online.
  6. Finally, part of that two-way communication should address the importance of basic, theoretical research. Non-applied science has always been particularly resented for its perceived elitism, with theoretical researchers persecuted with special ferocity during the French Revolution, the Chinese Cultural Revolution, and the Soviet Union (prominent theorists were in fact killed in all three cases). But this reflects a miscommunication about the importance of theory and basic science. As Philip Kitcher argues at length in Science, Truth and Democracy, we need to relay the fact that theory allows us to make large generalizations to fundamental laws (in the cases where we can find them), which is practically useful, because these generalizations allow us to make more precise and far-reaching predictions and interventions.

But, even in the cases in which basic science does not lead to practically useful generalizations, it can, I think, be appreciated for its sheer poetry. Just like professional scientists, folks who aren’t paid to do research for a living are also interested in the beauty of science – in the honest and systematic attempt to understand this bizarre and wonderful universe and how we woke up in it. And if you don’t believe me, I think it’s worth ending this piece with the story of when physicist Robert R. Wilson tried to get funding for an American particle accelerator.

***

When Robert R. Wilson was called upon by Congress in 1969 to convince the Joint Committee on Atomic Energy to fund a particle accelerator, Americans were in one of their distrustful phases in their see-sawing attitude toward science – with a recession, massive spending on the Apollo program, environmental degradation, and an arms race being waged in nuclear physics labs. Rather than use the usual Cold War tactic of appealing to the potential military utility of the proposed research, Wilson appealed to the importance of basic science as an intrinsic cultural good. The following is part of his exchange with Senator John Pastore, who asked why Congress should allocate $250 million to a particle accelerator:

Pastore: “Is there anything here that projects us in a position of being competitive with the Russians, with regard to this race?”

Wilson: “Only from a long-range point of view, of a developing technology. Otherwise, it has to do with: Are we good painters, good sculptors, good poets? I mean all the things that we really venerate and honor in our country and are patriotic about. In that sense, this new knowledge has all to do with honor and country but it has nothing to do directly with defending our country – except to make it worth defending.”

The funding was approved.

 

Featured image credit: Centro Brasileiro de Pesquisas Físicas, Gabi Tores

3 thoughts on “Elitism is a Threat to Science

  1. Interesting and important topic. Related questions are: Should participation in professional orchestras be elitist, accessible only to a tiny number of people with rare dedication and talent? Should playing professional basketball be elitist, accessible only to a tiny number of people with rare physical and mental talent? The answers people give to these other questions are quite different than to the science elite question. Why? A big difference has to do with the array of amateur opportunities to participate as well as the perceived value of the professional product to society. A key step you focus on is communicating to the public the benefits and outcomes of science. But there is more. We need to both improve the mechanisms by which we select the best and the brightest to become elite professional scientists as well as improve the ways in which non-scientists can be observers and participants in the scientific process. Two very destructive approaches are to remove selection processes so that people of mediocre talent can become professional scientists and to treat the public only as consumers of mysterious ideas and devices created by scientists. Thanks for your history lesson, particularly the accounts of the Chinese anti-elitist efforts.

Leave a Reply to ganvCancel reply